
©2016 Published in 4th International Symposium on Innovative Technologies in
Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey)

*Corresponding author: Address: Faculty of Technology, Department of Computer Engineering Selçuk University,

42003, Konya TURKEY. E-mail address: basciftci@selcek.edu.tr, Phone: +903322233353

Parallelised Algorithm of Isolated Minterm Detection for Logic Function

Simplification

*1Fatih Başçiftçi and 2Hakan Akar

*1Faculty of Technology, Department of Computer Engineering, Selçuk University, Konya, Turkey
2Elmalı Vocational School, Akdeniz University, Antalya, Turkey

Abstract:

This study compares serial and parallel implementation of isolated minterm detection algorithms.

Isolated minterms are detected from 10 different functions. Each function has different sized Karnaugh

maps (Kmaps). Both serial and parallel implementations detected same isolated minterms but parallel

implementation of algorithm runs faster than serial one. We presented “Finding isolated minterms in

simplification of logic functions” in our previous work [1]. In this study, we developed the algorithm,

parallelised this algorithm and compare computation times on different benchmarks. 10 different sized

functions are tested with both algorithms. Results revealed that parallelised algorithms works faster

than serial algorithm especially for big sized logic functions.

Key words: Isolated Minterms, Minterms, Isolation Level, Logic Functions, Switching Circuit

Simplification, Minimization.

1. Introduction

As digital electronics are represented by logic functions, logic functions are used in many areas

such as biology [2], computer hardware [3], cryptography [4], etc. [5]. Logic functions could be

single or multiple valued functions. Significant enhance in digital technology results in more

complicated logic functions. Thus, simplification of logic functions are very important for saving

hardware, run time, memory, energy and decreasing fault tolerance.

Logic function minimization is important [6] as a common tool for many disciplines [7]. Many

function simplification algorithms are developed such as Pomper and Armstrong [8], Quine-

McClusky [9], Beslich [10], BOOM [11], Espresso [12], etc. As there exists different kind of

logic functions, none of the algorithms are superior to others for all logic functions [13].

Logic functions consist of minterms and simplified results consist of Prime Implicants (PIs).

Simplified results include less number of Prime Implicants than minterms in logic functions. In

addition, costs of PIs are cheaper than minterms. Quality of logic function simplification is

simplicity of results. One of the most important factors effecting quality is minterm ordering

prior to simplification. Finding the right minterm to begin simplification is very important [14].

Simplification of minterm ordered logic functions is faster and result quality is higher than

unordered simplification.

F. BASCIFTCI and H. AKAR / ISITES2016 Alanya/Antalya - Turkey 1007

2. Related Works

2.1. Isolated Minterms

Regarding the complexity of algorithms, best case and worst case conditions are affected by data

set to be processed. For a more organized data set, algorithms work faster which leads to best

case complexity [15]. This rule is same in logic function simplification. If the dates set, minterms

in this case, are organized according to isolation level, logic function simplification algorithms

work faster.

Relatively centred minterms are easy to cover for simplification. But as there are many options to

cover centred minterms, result could be inaccurate. Simplification algorithm may not find the

simplest result in this case. But different minterms, relatively farthest ones are difficult to cover.

Also simplification results for these minterms are mostly accurate. Figure 1 is an example to

clarify the situation. This Kmap includes 4 minterms represented as dots “•” and A, B, and C are

the PIs covering these minterms.

Figure 1. Worst and best SOP statements

Figure 1(a) represents the worst case statement. Simplification process starts from relatively

centered minterm “0011”, which leads unnecessary implicant A. Then minterm 0010 is covered

by implicant C and minterm 0101 is covered by implicant B.

On the other hand, Figure 1(b) represents the best case statement. Simplification process starts

from relatively farthest minterm 0010 which produces implicant C. Simplification process goes

on minterm 0101 which produces implicant B. As a result unnecessary implicant A is not

produced. Thus, simplified result is better and time complexity of simplification algorithm is

lesser.

Above example explains how minterm selection effects simplification process. If we separate

individual minterms from clustered ones, simplification process will be easier. These individual

minterms could be located in the farthest corner of the map or they may have no neighbours be

covered together. These minterms are called isolated minterms.

 (a) (b)

F. BASCIFTCI and H. AKAR / ISITES2016 Alanya/Antalya - Turkey 1008

2.2. Isolated Minterm Detection

Organizing minterms for simplification effects both result quality and elapsed time. But

organizing minterms also spends time. That’s why some algorithms don’t organize minterms

prior to simplification such as Pomper and Armstrong algorithm. In this algorithm, minterm

selection is random but a PI selection criterion is number of minterms covered. This algorithm

finds all PIs covering target minterm and selects the biggest PI covering most minterms [16].

Besslich Algorithm assigns a weight number for each minterm. Clustered minterms has bigger

weight number and isolated minterms has smaller weight number. Simplification process starts

from the minterms which has smaller weight number. Beslich algorithm calculates effectiveness

factor for PI selection procedure. Effectiveness factor is equal to number of covered minterm

divided by cost of each PIs. Most effective PI is selected for covering procedure [10].

Dueck and Miller algorithm calculates the isolation factor for each minterm. The isolation factor

is inversely proportional with sum of neighbour minterms and sum of neighbour minterm

directions. Minterm ordering is started from high isolation factored minterms to low isolation

factored minterms. In addition, Dueck and Miller algorithm calculates Relative Break Count

(RBC) for each PIs. RBC is the level of simplification for remaining minterms. Thus, PI selection

procedure is done according to RBC level [14].

BOOM algorithm selects minterms randomly. This algorithm finds all possible PIs and

accumulates them in PI pool. Thus, recurring PIs are listed as only one which reduces

complexity. PI selection procedure is done according to following rules [11]:

1) Pick the biggest PI covering most of the minterms,

2) Pick the PI covering difficult minterms.

3) Pick the PI that has lowest cost,

4) Pick the PI randomly.

Logic functions vary according to ON and OFF minterm numbers, function size, default ordering

of minterms, etc. Some algorithms are efficient for some functions. The Pomper and Armstrong

Algorithm find better results than the random selection. Dueck & Miller and Besslich algorithms

find better results than Pomper and Armstrong Algorithms. According to the study by Tirumalai

and Butler's; none of the algorithms cannot have a fully superiority against others for all

functions [13].

3. Serial Detection Algorithm

Clustered minterms are close to each other while individual isolated minterms are away from

these clustered minterms. Proposed detection algorithm calculates distance between each

minterms and assigns them distance factor. X and Y coordinates of a minterm A are represented

as Ax and Ay. These coordinates for minterm B are Bx and By. The distance factors of A and B

minterms for x axis are calculated as below.

Dx=Ax – Bx (1)

F. BASCIFTCI and H. AKAR / ISITES2016 Alanya/Antalya - Turkey 1009

If distance factor (Dx) is smaller than half of Kmap size(S/2), then formula 1 is directly used to

calculate Dx. But if Dx is bigger than half of Kmap size(S/2), then these two minterms are closer

from the other side of the Kmap. In this case, Dx is calculated by subtraction from map size S. Let

two minterms are given on 7x7 Kmap, then maximum Dx between these two minterms could be

3 units. If it’s bigger than 3 units, these minterms are closer from other side of the Kmap. This

equation is given on Formula 2.

𝐷𝑥 =

{

 |Ax − Bx| |Ax − Bx| ≤

𝑆

2

 𝑆 − |Ax − Bx| |Ax − Bx| >
𝑆

2}

 (2)

The distance factor of y axis(Dy) is also calculated with same formulas stated in 1 and 2. After

finding Dx and Dy, absolute distance factor D is calculated by sum of them.

D=Dx+Dy (3)

Distance factor of each minterm is stored in a 2 dimensional array whose size is equal to S. First

and second dimension of array represents x and y axis value of each minterm respectively.

Weightiness factor (W) of two minterms is equal to Kmap size subtracted by distance factor. This

formula is given in 4.

W = S - D (4)

As seen from Figure 2, four nested loops are used to compare every minterms. First and second

for loops represents x and y axis of minterm A, while third and fourth for loops represents x and y

axis of minterm B.

Distance and Weightiness factors are calculated and stored in 2 dimensional arrays. Finally

minterms are sorted according to their W factor.

for each x axis of minterm A do

 for each y axis of minterm A do

 for each x axis of minterm B do

 for each y axis of minterm B do

 Dx = Ax – Bx

 If (Dx > S/2) then

 Dx = S – Dx

 Dy = Ay – By

 If (Dy > S/2) then

 Dy = S – Dy

 W = S – D

 WA += Wx + Wy

 end

 end

 end

end

sort minterms by their W

Figure 2. Minterm detection nested loops

F. BASCIFTCI and H. AKAR / ISITES2016 Alanya/Antalya - Turkey 1010

4. Parallelised Detection Algorithm

4.1. Parallel Computing

Computer technology has advanced significantly in last decade. Nowadays, server computers has

16, 32 cores in their CPUs, just as most of the PCs has multicore CPUs. To exploit the potential

of computers, parallel computing algorithms should be utilized. There are many studies [17]

about parallel computing [18]. As user interface remain unchanged for parallel computing, end

users have no difficulty for working programs. Thus technical knowledge for parallel computing

is not necessary for end users [19]. Parallelism is dividing a big task into smaller tasks and

assigns them to different core of CPUs then integrate the results coming from each core [20].

Theoretically this approach should speed up a program up to number of core times. But smaller

tasks should be independent from each other. These smaller tasks cannot communicate with each

other. Also dividing and integration phase needs time. Thus practical results of parallelisation

may not speed up as expected.

4.2. Parallel Detection Algorithm

One of the biggest obstacles to parallelise an algorithm is independence. In minterm detection

algorithm, all threads are using same array for storing results. Also, parallelisation time makes

this process unpractical for small functions.

Isolated minterm detection algorithm is parallelised by loops. This is called data parallelism.

Every thread works for different minterms and stores results to the same array. Thus, threads

don’t need to hold on for each other. Also, parallelised loops could work for CPUs that has any

number of cores. On the other hand, task parallelism requires distribution of tasks to number of

CPU cores.

All the formulas given in serial detection algorithm is also applied for parallel detection

algorithm. In this case, calculations for each minterm are done by different cores of the CPUs.

4.3. Implementation

We used C# language to implement serial and parallel detection algorithms. Users can create any

size Kmap and then selects the minterms on this Kmap. Find button computes elapsed time for

finding isolated minterms 3 times each for serial and parallel algorithms. Average of these three

calculations is noted as elapsed time. Figure 3 represents the user interface of the program. This

program is tested on a computer capable of i5 processor, 8 Gb. memory and running Windows 8

operating system.

F. BASCIFTCI and H. AKAR / ISITES2016 Alanya/Antalya - Turkey 1011

Figure 3. User interface of isolated minterm detection program

5. Experımental Evaluation and Applications

Conducted experimental results are presented in this section. 10 functions having 25 minterms

are tested with serial and parallel detection algorithms. Kmap size of these functions varies from

50 to 500 cells. Comparison of results is given in Table 1.

Table 1. Serial and parallel implementation times (msec.)

No Number of Rows Serial Parallel Time Difference Percentage

1 50 5.671 5.505 0.166 3.02%

2 100 22.682 19.679 3.003 15.26%

3 150 51.035 45.029 6.006 13.34%

4 200 92.396 78.407 13.989 17.84%

5 250 147.434 126.503 20.931 16.55%

6 300 212.477 180.452 32.025 17.75%

7 350 285.192 238.158 47.034 19.75%

8 400 372.917 324.549 48.368 14.90%

9 450 468.981 396.263 72.718 18.35%

10 500 583.39 494.663 88.727 17.94%

Results revealed that parallelised algorithm runs faster than serial one as expected. Minimum

detection time is 5.5 milliseconds for function 1 which has 50 rows Kmap size. Maximum

detection time is 583.4 for function 10 which has 500 rows Kmap size. Only function 1 has speed

up less than 13%. Speed up of parallelisation for all the other functions are between 13.3% and

19.8%.

F. BASCIFTCI and H. AKAR / ISITES2016 Alanya/Antalya - Turkey 1012

Figure 4. Elapsed time of serial and parallel algorithms

As seen from Figure 4, serial and parallel implementation times of isolated minterm detection

algorithm is close to each other for smaller functions. There is almost no difference for a Kmap

having 50 rows. On the other hand, there is a significant time saving for bigger functions. Figure

5 demonstrates that time gain of parallelisation is proportional to Kmap size. Time gain is bigger

for big functions, whereas time gain is smaller for small functions.

Figure 5. Time gain of parallelisation

As parallelisation procedure needs extra time, it is not convenient for smaller logic functions.

Parallelisation is very handy for bigger logic functions as expected.

6. Conclusions and Future Work

0

100

200

300

400

500

600

700

50 100 150 200 250 300 350 400 450 500

Elapsed Time (msec.)

Serial Parallel

0 3 6
14

21

32

47 48

73

89

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

T
im

e
D

if
fe

r
en

ce

Kmap Size

Time gain of parallelisation

F. BASCIFTCI and H. AKAR / ISITES2016 Alanya/Antalya - Turkey 1013

The aim of this study is to reveal advantage of parallelised algorithms. We developed our

previous work, finding isolated minterms algorithm [1]. In this study, we implemented serial and

parallel minterm detection algorithms. 10 different sized functions are tested with both

algorithms. Results revealed that parallelised algorithms save more time for big sized Kmaps than

smaller ones. Results are similar with other studies [21]. As part of future work, we want to

develop and implement parallel algorithms for every phase of logic function simplification.

Acknowledgements

This work has been supported by Scientific and Technological Research Council of Turkey,

1059B141500323 and the Coordinatorship of Selcuk University’s Scientific Research Projects.

References

[1] Başçiftçi, F. and Akar, H., 2014, Finding isolated minterms in simplification of logic

functions. International Conference on challenges in IT, Engineering and Technology

(ICCIET’2014).

[2] Macia, J., Manzoni, R., Conde, N., Urrios, A., Nadal, E., Solé, R., & Posas, F., 2016,

Implementation of complex biological logic circuits using spatially distributed multicellular

consortia, PLOS Computational Biology.

[3] Hyduke, S. M., Hahanov V.I., Melnikova O.V., Hahanova I.V., 2005, Hardware emulation of

large scale boolean equations systems, ISSN:1392-1215, Elektronika ir Elektrotechnika, 3(59).

[4] Datta, K. and Sengupta, I., 2013, Applications of reversible logic in cryptography and coding

theory. 26th International Conference on VLSI Design.

[5] Amy, M., Maslov, D., Mosca M., and Roetteler M., 2013, A meet-in-the-middle algorithm for

fast synthesis of depth-optimal quantum circuits, Transactions on Computer - Aided Design of

Integrated Circuits and Systems, 32(6).

[6] Altun M. and Riedel, M. D., 2012, Logic synthesis for switching lattices, Transactions on

Computers, 61(11).

[7] Martins, M. G. A., Ribas, R. P., Reis, A. I. (2012): Functional composition: A new paradigm

for performing logic synthesis. 13th International Symposium on Quality Electronic Design.

[8] Pomper, G. and Armstrong, J. R., 1981, Representation of multivalued functions using the

direct cover method, IEEE Transactions On Computers, Vol. C-30, No. 9.

[9] McCluskey, E. J., 1956, Minimization of boolean functions. Bell System Technical Journal,

35, pp.1417–1444.

[10] Besslich, P. W., 1986, Heuristic minimization of MVL functions: A direct cover approach,

IEEE Transactions on Computers, C-35(2).

[11] Bernasconi, A., Ciriani, V., Fišer, P. Trucco, G., 2012, Weighted don't cares. Proc. of 10th

International Workshop on Boolean Problems. p. 123-130, ISBN 978-3-86012-438-3.

[12] Brayton, R. K., Hachtel, G. D., McMullen, C. T., Sangiovanni-Vincentelli, A. L. 1984,

Logic minimization algorithms for VLSI synthesis, ISBN:0-89838-164-9, Kluwer Academic

Publishers.

F. BASCIFTCI and H. AKAR / ISITES2016 Alanya/Antalya - Turkey 1014

[13] Tirumalai, P. and Butler J. T., Analysis of minimization algorithms for multiple valued

programmable logic arrays, IEEE Transactions on Computers, Vol. 40(2), pp.167-177., 1991.

[14] Dueck, G. W., 1988, Algorithms for the minimization of binary and multiple-valued logic

functions, Graduate School of Manitoba.

[15] Oh, J, Choi, C-H, Park, M-K, Kim, BK, Hwang, K, Lee, S-H, et al., 2016, CLUSTOM-

CLOUD: In-Memory data grid-based software for clustering 16s rrna sequence data in the cloud

environment, PLoS ONE 11(3).

[16] Pomper, G. and Armstrong, J. R., 1981, Representation of multivalued functions using the

direct cover method, IEEE Transactions On Computers, Vol. C-30, No. 9.

[17] Zhang, F., Hu, C., Wu, P., Zhang, H., Wong, M. D. F., 2015, Accelerating aerial image

simulation using improved CPU/GPU collaborative computing, Computers & Electrical

Engineering, 46, pp.176-189, ISSN 0045-7906.

[18] Subramaniam, K. and Balasubramanian, S. (2015): Application of parallel computing in

image processing for grading of citrus fruits. Advanced Computing and Communication Systems,

International Conference on, Coimbatore, pp. 1-6.

[19] Kumar, L. and Rath, S. K. (2015): Predicting object-oriented software maintainability using

hybrid neural network with parallel computing concept. Proc. of the 8th India Software

Engineering Conference, pp.100-109.

[20] Ercan, U., Akar, H., Koçer. A., (2013): Paralel programlamada kullanılan temel

algoritmalar, Akademik Bilişim’13.

[21] Zhao, Zhendong, et al. (2015): A computationally efficient algorithm for learning topical

collocation models. International Joint Conference on Natural Language Processing of the Asian

Federation of Natural Language Processing, 1.

